Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-Robustness of the Cluster-Robust Inference: with a Proposal of a New Robust Method (2210.16991v3)

Published 31 Oct 2022 in econ.EM

Abstract: The conventional cluster-robust (CR) standard errors may not be robust. They are vulnerable to data that contain a small number of large clusters. When a researcher uses the 51 states in the U.S. as clusters, the largest cluster (California) consists of about 10% of the total sample. Such a case in fact violates the assumptions under which the widely used CR methods are guaranteed to work. We formally show that the conventional CR methods fail if the distribution of cluster sizes follows a power law with exponent less than two. Besides the example of 51 state clusters, some examples are drawn from a list of recent original research articles published in a top journal. In light of these negative results about the existing CR methods, we propose a weighted CR (WCR) method as a simple fix. Simulation studies support our arguments that the WCR method is robust while the conventional CR methods are not.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.