Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Practical Distributed ADMM Solver for Billion-Scale Generalized Assignment Problems (2210.16986v1)

Published 24 Oct 2022 in cs.DS

Abstract: Assigning items to owners is a common problem found in various real-world applications, for example, audience-channel matching in marketing campaigns, borrower-lender matching in loan management, and shopper-merchant matching in e-commerce. Given an objective and multiple constraints, an assignment problem can be formulated as a constrained optimization problem. Such assignment problems are usually NP-hard, so when the number of items or the number of owners is large, solving for exact solutions becomes challenging. In this paper, we are interested in solving constrained assignment problems with hundreds of millions of items. Thus, with just tens of owners, the number of decision variables is at billion-scale. This scale is usually seen in the internet industry, which makes decisions for large groups of users. We relax the possible integer constraint, and formulate a general optimization problem that covers commonly seen assignment problems. Its objective function is convex. Its constraints are either linear, or convex and separable by items. We study to solve our generalized assignment problems in the Bregman Alternating Direction Method of Multipliers (BADMM) framework where we exploit Bregman divergence to transform the Augmented Lagrangian into a separable form, and solve many subproblems in parallel. The entire solution can thus be implemented using a MapReduce-style distributed computation framework. We present experiment results on both synthetic and real-world datasets to verify its accuracy and scalability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.