Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A study on the Poisson, geometric and Pascal distributions motivated by Chvátal's conjecture (2210.16515v2)

Published 29 Oct 2022 in math.PR

Abstract: Let $B(n,p)$ denote a binomial random variable with parameters $n$ and $p$. Vas\v{e}k Chv\'{a}tal conjectured that for any fixed $n\geq 2$, as $m$ ranges over ${0,\ldots,n}$, the probability $q_m:=P(B(n,m/n)\leq m)$ is the smallest when $m$ is closest to $\frac{2n}{3}$. This conjecture has been solved recently. Motivated by this conjecture, in this paper, we consider the corresponding minimum value problem on the probability that a random variable is not more than its expectation, when its distribution is the Poisson distribution, the geometric distribution or the Pascal distribution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube