Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jointly Resampling and Reconstructing Corrupted Images for Image Classification using Frequency-Selective Mesh-to-Grid Resampling (2210.15444v3)

Published 27 Oct 2022 in eess.IV

Abstract: Neural networks became the standard technique for image classification throughout the last years. They are extracting image features from a large number of images in a training phase. In a following test phase, the network is applied to the problem it was trained for and its performance is measured. In this paper, we focus on image classification. The amount of visual data that is interpreted by neural networks grows with the increasing usage of neural networks. Mostly, the visual data is transmitted from the application side to a central server where the interpretation is conducted. If the transmission is disturbed, losses occur in the transmitted images. These losses have to be reconstructed using postprocessing. In this paper, we incorporate the widely applied bilinear and bicubic interpolation and the high-quality reconstruction Frequency-Selective Reconstruction (FSR) for the reconstruction of corrupted images. However, we propose to use Frequency-Selective Mesh-to-Grid Resampling (FSMR) for the joint reconstruction and resizing of corrupted images. The performance in terms of classification accuracy of EfficientNetB0, DenseNet121, DenseNet201, ResNet50 and ResNet152 is examined. Results show that the reconstruction with FSMR leads to the highest classification accuracy for most networks. Average improvements of up to 6.7 percentage points are possible for DenseNet121.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25.   Curran Associates, Inc., 2012.
  2. M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.   PMLR, 09–15 Jun 2019, pp. 6105–6114.
  3. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in Proceedings 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.
  4. K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Residual Networks,” in Proceedings Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.   Cham: Springer International Publishing, 2016, pp. 630–645.
  5. K. Cao, S. Hu, Y. Shi, A. W. Colombo, S. Karnouskos, and X. Li, “A Survey on Edge and Edge-Cloud Computing Assisted Cyber-Physical Systems,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7806–7819, 2021.
  6. N. Hassan, K.-L. A. Yau, and C. Wu, “Edge Computing in 5G: A Review,” IEEE Access, vol. 7, pp. 127 276–127 289, 2019.
  7. G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012.
  8. B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J. Ohm, “Overview of the Versatile Video Coding (VVC) Standard and its Applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3736–3764, 2021.
  9. J. Seiler, M. Jonscher, M. Schöberl, and A. Kaup, “Resampling Images to a Regular Grid From a Non-Regular Subset of Pixel Positions Using Frequency Selective Reconstruction,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 4540–4555, November 2015.
  10. J. Seiler and A. Kaup, “Complex-valued frequency selective extrapolation for fast image and video signal extrapolation,” IEEE Signal Processing Letters, vol. 17, no. 11, pp. 949–952, 2010.
  11. A. Spruck, V. Heimann, and A. Kaup, “Increasing the Accuracy of a Neural Network Using Frequency Selective Mesh-to-Grid Resampling,” in Proceedings IEEE International Symposium on Circuits and Symstems, 2022.
  12. E. Y. Lam and J. W. Goodman, “A Mathematical Analysis of the DCT Coefficient Distributions for Images,” in IEEE Transactions on Image Processing, vol. 9, no. 10, October 2000, pp. 1661–1666.
  13. V. Heimann, N. Genser, and A. Kaup, “Key Point Agnostic Frequency-Selective Mesh-to-Grid Resampling using Spectral Weighting,” in Proceedings of the IEEE 22nd Workshop on Multimedia Signal Processing, 2020.
  14. V. Heimann, A. Spruck, and A. Kaup, “Frequency-Selective Mesh-to-Mesh Resampling for Color Upsampling of Point Clouds,” in Proceedings IEEE 23rd International Workshop on Multimedia Signal Processing, 2021.
  15. L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006.
  16. O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar, “Cats and Dogs,” in Proceedings 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3498–3505.
  17. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/
  18. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32.   Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Summary

We haven't generated a summary for this paper yet.