Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Increasing the Accuracy of a Neural Network Using Frequency Selective Mesh-to-Grid Resampling (2209.14431v1)

Published 28 Sep 2022 in cs.CV and eess.IV

Abstract: Neural networks are widely used for almost any task of recognizing image content. Even though much effort has been put into investigating efficient network architectures, optimizers, and training strategies, the influence of image interpolation on the performance of neural networks is not well studied. Furthermore, research has shown that neural networks are often sensitive to minor changes in the input image leading to drastic drops of their performance. Therefore, we propose the use of keypoint agnostic frequency selective mesh-to-grid resampling (FSMR) for the processing of input data for neural networks in this paper. This model-based interpolation method already showed that it is capable of outperforming common interpolation methods in terms of PSNR. Using an extensive experimental evaluation we show that depending on the network architecture and classification task the application of FSMR during training aids the learning process. Furthermore, we show that the usage of FSMR in the application phase is beneficial. The classification accuracy can be increased by up to 4.31 percentage points for ResNet50 and the Oxflower17 dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.