Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applications of the Streaming Networks (2004.11805v1)

Published 27 Mar 2020 in cs.CV and eess.IV

Abstract: Most recently Streaming Networks (STnets) have been introduced as a mechanism of robust noise-corrupted images classification. STnets is a family of convolutional neural networks, which consists of multiple neural networks (streams), which have different inputs and their outputs are concatenated and fed into a single joint classifier. The original paper has illustrated how STnets can successfully classify images from Cifar10, EuroSat and UCmerced datasets, when images were corrupted with various levels of random zero noise. In this paper, we demonstrate that STnets are capable of high accuracy classification of images corrupted with Gaussian noise, fog, snow, etc. (Cifar10 corrupted dataset) and low light images (subset of Carvana dataset). We also introduce a new type of STnets called Hybrid STnets. Thus, we illustrate that STnets is a universal tool of image classification when original training dataset is corrupted with noise or other transformations, which lead to information loss from original images.

Citations (2)

Summary

We haven't generated a summary for this paper yet.