Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Opening the Black Box of wav2vec Feature Encoder (2210.15386v1)

Published 27 Oct 2022 in cs.SD, cs.CL, cs.LG, and eess.AS

Abstract: Self-supervised models, namely, wav2vec and its variants, have shown promising results in various downstream tasks in the speech domain. However, their inner workings are poorly understood, calling for in-depth analyses on what the model learns. In this paper, we concentrate on the convolutional feature encoder where its latent space is often speculated to represent discrete acoustic units. To analyze the embedding space in a reductive manner, we feed the synthesized audio signals, which is the summation of simple sine waves. Through extensive experiments, we conclude that various information is embedded inside the feature encoder representations: (1) fundamental frequency, (2) formants, and (3) amplitude, packed with (4) sufficient temporal detail. Further, the information incorporated inside the latent representations is analogous to spectrograms but with a fundamental difference: latent representations construct a metric space so that closer representations imply acoustic similarity.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.