Eigen Memory Trees (2210.14077v3)
Abstract: This work introduces the Eigen Memory Tree (EMT), a novel online memory model for sequential learning scenarios. EMTs store data at the leaves of a binary tree and route new samples through the structure using the principal components of previous experiences, facilitating efficient (logarithmic) access to relevant memories. We demonstrate that EMT outperforms existing online memory approaches, and provide a hybridized EMT-parametric algorithm that enjoys drastically improved performance over purely parametric methods with nearly no downsides. Our findings are validated using 206 datasets from the OpenML repository in both bounded and infinite memory budget situations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.