Dihedral rings of patterns emerging from a Turing bifurcation (2210.13122v2)
Abstract: Collective organisation of patterns into ring-like configurations has been well-studied when patterns are subject to either weak or semi-strong interactions. However, little is known numerically or analytically about their formation when the patterns are strongly interacting. We prove that approximate strongly interacting patterns can emerge in various ring-like dihedral configurations, bifurcating from quiescence near a Turing instability in generic two-component reaction-diffusion systems. The methods used are constructive and provide accurate initial conditions for numerical continuation methods to path-follow these ring-like patterns in parameter space. Our analysis is complemented by numerical investigations that illustrate our findings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.