Papers
Topics
Authors
Recent
2000 character limit reached

Online Adaptive Policy Selection in Time-Varying Systems: No-Regret via Contractive Perturbations (2210.12320v3)

Published 22 Oct 2022 in math.OC

Abstract: We study online adaptive policy selection in systems with time-varying costs and dynamics. We develop the Gradient-based Adaptive Policy Selection (GAPS) algorithm together with a general analytical framework for online policy selection via online optimization. Under our proposed notion of contractive policy classes, we show that GAPS approximates the behavior of an ideal online gradient descent algorithm on the policy parameters while requiring less information and computation. When convexity holds, our algorithm is the first to achieve optimal policy regret. When convexity does not hold, we provide the first local regret bound for online policy selection. Our numerical experiments show that GAPS can adapt to changing environments more quickly than existing benchmarks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.