Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Polynomial-time Algorithm to Solve the Airplane Refueling Problem: the Sequential Search Algorithm (2210.11634v7)

Published 18 Oct 2022 in cs.DS and math.OC

Abstract: Airplane refueling problem is a nonlinear unconstrained optimization problem with $n!$ feasible solutions. Given a fleet of $n$ airplanes with mid-air refueling technique, the question is to find the best refueling policy to make the last remaining airplane travel the farthest. In order to solve airplane refueling problem, we proposed the definition of sequential feasible solution by employing the refueling properties of data structure. We proved that if an airplane refueling instance has feasible solutions, it must have sequential feasible solutions; and the optimal feasible solution must be the optimal sequential feasible solution. So we need to numerate all the sequential feasible solutions to get an exact algorithm. We proposed the sequential search algorithm which consists of two steps, the first step of which aims to seek out all of the sequential feasible solutions, and the second step aims to search for the maximal sequential feasible solution by bubble sorting all of the sequential feasible solutions. We observed that the number of the sequential feasible solutions will change to grow at a polynomial rate when the input size of $n$ is greater than an inflection point $N$. Then we proved that the sequential search algorithm is a polynomial-time algorithm to solve the airplane refueling problem. Moreover, we built an efficient computability scheme, according to which we could forecast within a polynomial time the computational complexity of the sequential search algorithm that runs on any given airplane refueling instance. Thus we could provide a computational strategy for decision makers or algorithm users by considering with their available computing resources.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.