Pairs of $r$-primitive and $k$-normal elements in finite fields (2210.11504v1)
Abstract: Let $\mathbb{F}{qn}$ be a finite field with $qn$ elements and $r$ be a positive divisor of $qn-1$. An element $\alpha \in \mathbb{F}{qn}*$ is called $r$-primitive if its multiplicative order is $(qn-1)/r$. Also, $\alpha \in \mathbb{F}{qn}$ is $k$-normal over $\mathbb{F}_q$ if the greatest common divisor of the polynomials $g{\alpha}(x) = \alpha x{n-1}+ \alphaq x{n-2} + \ldots + \alpha{q{n-2}}x + \alpha{q{n-1}}$ and $xn-1$ in $\mathbb{F}{qn}[x]$ has degree $k$. These concepts generalize the ideas of primitive and normal elements, respectively. In this paper, we consider non-negative integers $m_1,m_2,k_1,k_2$, positive integers $r_1,r_2$ and rational functions $F(x)=F_1(x)/F_2(x) \in \mathbb{F}{qn}(x)$ with $\deg(F_i) \leq m_i$ for $i\in{ 1,2}$ satisfying certain conditions and we present sufficient conditions for the existence of $r_1$-primitive $k_1$-normal elements $\alpha \in \mathbb{F}_{qn}$ over $\mathbb{F}_q$, such that $F(\alpha)$ is an $r_2$-primitive $k_2$-normal element over $\mathbb{F}_q$. Finally as an example we study the case where $r_1=2$, $r_2=3$, $k_1=2$, $k_2=1$, $m_1=2$ and $m_2=1$, with $n \ge 7$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.