Papers
Topics
Authors
Recent
2000 character limit reached

Investigating Quantum Many-Body Systems with Tensor Networks, Machine Learning and Quantum Computers (2210.11130v1)

Published 20 Oct 2022 in quant-ph

Abstract: We perform quantum simulation on classical and quantum computers and set up a machine learning framework in which we can map out phase diagrams of known and unknown quantum many-body systems in an unsupervised fashion. The classical simulations are done with state-of-the-art tensor network methods in one and two spatial dimensions. For one dimensional systems, we utilize matrix product states (MPS) that have many practical advantages and can be optimized using the efficient density matrix renormalization group (DMRG) algorithm. The data for two dimensional systems is obtained from entangled projected pair states (PEPS) optimized via imaginary time evolution. Data in form of observables, entanglement spectra, or parts of the state vectors from these simulations, is then fed into a deep learning (DL) pipeline where we perform anomaly detection to map out the phase diagram. We extend this notion to quantum computers and introduce quantum variational anomaly detection. Here, we first simulate the ground state and then process it in a quantum machine learning (QML) manner. Both simulation and QML routines are performed on the same device, which we demonstrate both in classical simulation and on a physical quantum computer hosted by IBM.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.