Fractonic Luttinger Liquids and Supersolids in a Constrained Bose-Hubbard Model (2210.11072v2)
Abstract: Quantum many-body systems with fracton constraints are widely conjectured to exhibit unconventional low-energy phases of matter. In this work, we demonstrate the existence of a variety of such exotic quantum phases in the ground states of a dipole-moment conserving Bose-Hubbard model in one dimension. For integer boson fillings, we perform a mapping of the system to a model of microscopic local dipoles, which are composites of fractons. We apply a combination of low-energy field theory and large-scale tensor network simulations to demonstrate the emergence of a dipole Luttinger liquid phase. At non-integer fillings our numerical approach shows an intriguing compressible state described by a quantum Lifshitz model in which charge density-wave order coexists with dipole long-range order and superfluidity - a `dipole supersolid'. While this supersolid state may eventually be unstable against lattice effects in the thermodynamic limit, its numerical robustness is remarkable. We discuss potential experimental implications of our results.
- R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev. Condens. Matter Phys. 10, 295 (2019).
- M. Pretko, X. Chen, and Y. You, Fracton phases of matter, Int. J. Mod. Phys. A 35, 2030003 (2020).
- C. Chamon, Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection, Phys. Rev. Lett. 94, 040402 (2005).
- J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A 83, 042330 (2011).
- B. Yoshida, Exotic topological order in fractal spin liquids, Physical Review B 88, 125122 (2013).
- S. Vijay, J. Haah, and L. Fu, A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations, Phys. Rev. B 92, 235136 (2015).
- M. Pretko, Subdimensional particle structure of higher rank U(1)𝑈1U(1)italic_U ( 1 ) spin liquids, Phys. Rev. B 95, 115139 (2017a).
- M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018).
- M. Pretko, Higher-spin Witten effect and two-dimensional fracton phases, Phys. Rev. B 96, 125151 (2017b).
- D. J. Williamson, Z. Bi, and M. Cheng, Fractonic matter in symmetry-enriched U(1)𝑈1{{U}}(1)italic_U ( 1 ) gauge theory, Phys. Rev. B 100, 125150 (2019).
- V. Khemani, M. Hermele, and R. Nandkishore, Localization from Hilbert space shattering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020).
- S. Moudgalya and O. I. Motrunich, Hilbert Space Fragmentation and Commutant Algebras, Phys. Rev. X 12, 011050 (2022).
- A. Gromov, A. Lucas, and R. M. Nandkishore, Fracton hydrodynamics, Phys. Rev. Res. 2, 033124 (2020).
- A. Morningstar, V. Khemani, and D. A. Huse, Kinetically constrained freezing transition in a dipole-conserving system, Phys. Rev. B 101, 214205 (2020).
- P. Zhang, Subdiffusion in strongly tilted lattice systems, Phys. Rev. Res. 2, 033129 (2020).
- J. Iaconis, A. Lucas, and R. Nandkishore, Multipole conservation laws and subdiffusion in any dimension, Phys. Rev. E 103, 022142 (2021).
- A. Osborne and A. Lucas, Infinite families of fracton fluids with momentum conservation, Phys. Rev. B 105, 024311 (2022).
- J. Iaconis, S. Vijay, and R. Nandkishore, Anomalous subdiffusion from subsystem symmetries, Phys. Rev. B 100, 214301 (2019).
- J. Feldmeier, F. Pollmann, and M. Knap, Emergent fracton dynamics in a nonplanar dimer model, Phys. Rev. B 103, 094303 (2021).
- A. Prem, J. Haah, and R. Nandkishore, Glassy quantum dynamics in translation invariant fracton models, Phys. Rev. B 95, 155133 (2017).
- J. Feldmeier and M. Knap, Critically slow operator dynamics in constrained many-body systems, Phys. Rev. Lett. 127, 235301 (2021).
- D. Hahn, P. A. McClarty, and D. J. Luitz, Information Dynamics in a Model with Hilbert Space Fragmentation, SciPost Phys. 11, 74 (2021).
- M. Pretko and L. Radzihovsky, Fracton-Elasticity Duality, Phys. Rev. Lett. 120, 195301 (2018a).
- A. Gromov, Chiral Topological Elasticity and Fracton Order, Phys. Rev. Lett. 122, 076403 (2019).
- A. Kumar and A. C. Potter, Symmetry-enforced fractonicity and two-dimensional quantum crystal melting, Phys. Rev. B 100, 045119 (2019).
- Z. Zhai and L. Radzihovsky, Two-dimensional melting via sine-gordon duality, Phys. Rev. B 100, 094105 (2019).
- L. Radzihovsky, Quantum Smectic Gauge Theory, Phys. Rev. Lett. 125, 267601 (2020).
- Z. Zhai and L. Radzihovsky, Fractonic gauge theory of smectics, Ann. Phys. 435, 168509 (2021).
- M. Pretko and L. Radzihovsky, Symmetry-enriched fracton phases from supersolid duality, Phys. Rev. Lett. 121, 235301 (2018b).
- M. Pretko, Z. Zhai, and L. Radzihovsky, Crystal-to-fracton tensor gauge theory dualities, Phys. Rev. B 100, 134113 (2019).
- J.-K. Yuan, S. A. Chen, and P. Ye, Fractonic superfluids, Phys. Rev. Res. 2, 023267 (2020).
- S. A. Chen, J.-K. Yuan, and P. Ye, Fractonic superfluids. ii. condensing subdimensional particles, Phys. Rev. Res. 3, 013226 (2021).
- L. Radzihovsky, Lifshitz gauge duality, Phys. Rev. B 106, 224510 (2022).
- E. Lake, M. Hermele, and T. Senthil, Dipolar Bose-Hubbard model, Phys. Rev. B 106, 064511 (2022).
- T. Giamarchi, Quantum physics in one dimension, Vol. 121 (Clarendon press, 2003).
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).
- S. Sachdev, K. Sengupta, and S. M. Girvin, Mott Insulators in Strong Electric Fields, Phys. Rev. B 66, 075128 (2002).
- C. Stahl, E. Lake, and R. Nandkishore, Spontaneous breaking of multipole symmetries, Phys. Rev. B 105, 155107 (2022).
- A. Kapustin and L. Spodyneiko, Hohenberg-mermin-wagner-type theorems and dipole symmetry, Phys. Rev. B 106, 245125 (2022).
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Topological characterization of fractional quantum hall ground states from microscopic hamiltonians, Phys. Rev. Lett. 110, 236801 (2013).
- G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension, Phys. Rev. Lett. 98, 070201 (2007).
- S. Ejima, H. Fehske, and F. Gebhard, Dynamic properties of the one-dimensional bose-hubbard model, Europhys. Lett. 93, 30002 (2011).
- The dipole velocity udsubscript𝑢𝑑u_{d}italic_u start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT is determined from a delicate finite-size flow of the dipole energy gap, while kdsubscript𝑘𝑑k_{d}italic_k start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT can be robustly determined from the decay of correlation functions.
- F. D. M. Haldane and E. H. Rezayi, Finite-Size Studies of the Incompressible State of the Fractionally Quantized Hall Effect and its Excitations, Phys. Rev. Lett. 54, 237 (1985).
- S. A. Trugman and S. Kivelson, Exact results for the fractional quantum Hall effect with general interactions, Phys. Rev. B 31, 5280 (1985).
- E. J. Bergholtz and A. Karlhede, Half-Filled Lowest Landau Level on a Thin Torus, Phys. Rev. Lett. 94, 026802 (2005).
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars in a Landau level on a thin torus, Phys. Rev. B 102, 195150 (2020).
- All data and simulation codes are available upon reasonable request at 10.5281/zenodo.7214729.
- J. Hauschild and F. Pollmann, Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy), SciPost Physics Lecture Notes , 5 (2018).
- S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a global symmetry, Phys. Rev. A 82, 050301(R) (2010).
- S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network states and algorithms in the presence of a global U(1) symmetry, Phys. Rev. B 83, 115125 (2011).