Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractonic Quantum Quench in Dipole-constrained Bosons (2311.13156v4)

Published 22 Nov 2023 in cond-mat.quant-gas, cond-mat.other, and cond-mat.str-el

Abstract: We investigate the quench dynamics in the dipolar Bose-Hubbard model (DBHM) in one dimension. The boson hopping is constrained by dipole conservation and show fractonic dynamics. The ground states at large Hubbard interaction $U$ are Mott insulators at integer filling and a period-2 charge density wave (CDW) at half-integer filling. We focus on Mott-to-Mott and CDW-to-CDW quenches and find that dipole correlation spreading shows the light-cone behavior with the Lieb-Robinson (LR) velocity proportional to the dipole kinetic energy $J$ and the square of the density in the case of Mott quench at integer filling. Effective model for post-quench dynamics is constructed under the dilute-dipole approximation and fits the numerical results well. For CDW quench we observe a much reduced LR velocity of order $J2/U$ and additional periodic features in the time direction. The emergence of CDW ground state and the reduced LR velocity at half-integer filling can both be understood by careful application of the second-order perturbation theory. The oscillatory behavior arises from quantum scars in the quadrupole sector of the spectrum and is captured by a PXP-like model that we derive by projecting the DBHM to the quadrupolar sector of the Hilbert space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. S. Sachdev, K. Sengupta, and S. Girvin, Mott insulators in strong electric fields, Physical Review B 66, 075128 (2002).
  2. A. Prem, M. Pretko, and R. M. Nandkishore, Emergent phases of fractonic matter, Physical Review B 97, 085116 (2018).
  3. E. van Nieuwenburg, Y. Baum, and G. Refael, From Bloch oscillations to many-body localization in clean interacting systems, Proceedings of the National Academy of Sciences 116, 9269 (2019), https://www.pnas.org/doi/pdf/10.1073/pnas.1819316116 .
  4. V. Khemani, M. Hermele, and R. Nandkishore, Localization from Hilbert space shattering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020).
  5. A. Gromov, A. Lucas, and R. M. Nandkishore, Fracton hydrodynamics, Physical Review Research 2, 033124 (2020).
  6. J. Iaconis, A. Lucas, and R. Nandkishore, Multipole conservation laws and subdiffusion in any dimension, Physical Review E 103, 022142 (2021).
  7. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars in a Landau level on a thin torus, Phys. Rev. B 102, 195150 (2020).
  8. S. Moudgalya and O. I. Motrunich, Hilbert Space Fragmentation and Commutant Algebras, Phys. Rev. X 12, 011050 (2022).
  9. E. Lake, M. Hermele, and T. Senthil, Dipolar Bose-Hubbard model, Phys. Rev. B 106, 064511 (2022).
  10. D. S. Ageev and V. V. Pushkarev, Quantum quenches in fractonic field theories (2023), arXiv:2306.14951 [hep-th] .
  11. C. Kollath, A. M. Läuchli, and E. Altman, Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model, Phys. Rev. Lett. 98, 180601 (2007).
  12. A. M. Läuchli and C. Kollath, Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model, Journal of Statistical Mechanics: Theory and Experiment 2008, P05018 (2008).
  13. T. Kuwahara and K. Saito, Lieb-Robinson Bound and Almost-Linear Light Cone in Interacting Boson Systems, Phys. Rev. Lett. 127, 070403 (2021).
  14. C. Yin and A. Lucas, Finite Speed of Quantum Information in Models of Interacting Bosons at Finite Density, Phys. Rev. X 12, 021039 (2022).
  15. M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model, Phys. Rev. Lett. 110, 135704 (2013).
  16. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  17. S. R. White, Density matrix formulation for quantum renormalization groups, Physical Review Letters 69, 2863 (1992).
  18. S. R. White, Density-matrix algorithms for quantum renormalization groups, Physical Review B 48, 10345 (1993).
  19. U. Schollwöck, The density-matrix renormalization group, Reviews of Modern Physics 77, 259 (2005).
  20. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011).
  21. S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network states and algorithms in the presence of a global U(1) symmetry, Physical Review B 83, 115125 (2011).
  22. E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Communications in Mathematical Physics 28, 251 (1972).
  23. J. Faupin, M. Lemm, and I. M. Sigal, On Lieb–Robinson Bounds for the Bose–Hubbard Model, Communications in Mathematical Physics 394, 1011 (2022).
  24. C.-F. A. Chen, A. Lucas, and C. Yin, Speed limits and locality in many-body quantum dynamics, Reports on Progress in Physics 86, 116001 (2023).
  25. M. Lacki and M. Heyl, Dynamical quantum phase transitions in collapse and revival oscillations of a quenched superfluid, Phys. Rev. B 99, 121107 (2019).
  26. R. Kaneko and I. Danshita, Tensor-network study of correlation-spreading dynamics in the two-dimensional Bose-Hubbard model, Communications Physics 5, 65 (2022).
  27. A. Mokhtari-Jazi, M. R. C. Fitzpatrick, and M. P. Kennett, Phase and group velocities for correlation spreading in the Mott phase of the Bose-Hubbard model in dimensions greater than one, Phys. Rev. A 103, 023334 (2021).
  28. Supplemental Material for [Title of the Main Paper], Supplemental Material available at [URL] (2023), accessed: [Access Date].

Summary

We haven't generated a summary for this paper yet.