Deconfinement Dynamics of Fractons in Tilted Bose-Hubbard Chains (2311.08455v2)
Abstract: Fractonic constraints can lead to exotic properties of quantum many-body systems. Here, we investigate the dynamics of fracton excitations on top of the ground states of a one-dimensional, dipole-conserving Bose-Hubbard model. We show that nearby fractons undergo a collective motion mediated by exchanging virtual dipole excitations, which provides a powerful dynamical tool to characterize the underlying ground state phases. We find that in the gapped Mott insulating phase, fractons are confined to each other as motion requires the exchange of massive dipoles. When crossing the phase transition into a gapless Luttinger liquid of dipoles, fractons deconfine. Their transient deconfinement dynamics scales diffusively and exhibits strong but subleading contributions described by a quantum Lifshitz model. We examine prospects for the experimental realization in tilted Bose-Hubbard chains by numerically simulating the adiabatic state preparation and subsequent time evolution, and find clear signatures of the low-energy fracton dynamics.
- R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev. Condens. Matter Phys. 10, 295 (2019).
- M. Pretko, X. Chen, and Y. You, Fracton phases of matter, Int. J. Mod. Phys. A 35, 2030003 (2020).
- A. Gromov and L. Radzihovsky, Colloquium: Fracton matter, Rev. Mod. Phys. 96, 011001 (2024).
- C. Chamon, Quantum glassiness in strongly correlated clean systems: An example of topological overprotection, Phys. Rev. Lett. 94, 040402 (2005).
- J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A 83, 042330 (2011).
- S. Bravyi and J. Haah, Quantum self-correction in the 3d cubic code model, Phys. Rev. Lett. 111, 200501 (2013).
- B. Yoshida, Exotic topological order in fractal spin liquids, Phys. Rev. B 88, 125122 (2013).
- S. Vijay, J. Haah, and L. Fu, A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations, Phys. Rev. B 92, 235136 (2015).
- M. Pretko, Subdimensional particle structure of higher rank u(1)𝑢1u(1)italic_u ( 1 ) spin liquids, Phys. Rev. B 95, 115139 (2017a).
- M. Pretko, Generalized electromagnetism of subdimensional particles: A spin liquid story, Phys. Rev. B 96, 035119 (2017b).
- M. Pretko, Higher-spin Witten effect and two-dimensional fracton phases, Phys. Rev. B 96, 125151 (2017c).
- M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018).
- V. Khemani, M. Hermele, and R. Nandkishore, Localization from hilbert space shattering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020).
- A. Gromov, A. Lucas, and R. M. Nandkishore, Fracton hydrodynamics, Phys. Rev. Res. 2, 033124 (2020).
- A. Morningstar, V. Khemani, and D. A. Huse, Kinetically constrained freezing transition in a dipole-conserving system, Phys. Rev. B 101, 214205 (2020).
- P. Zhang, Subdiffusion in strongly tilted lattice systems, Phys. Rev. Res. 2, 033129 (2020).
- J. Feldmeier and M. Knap, Critically slow operator dynamics in constrained many-body systems, Phys. Rev. Lett. 127, 235301 (2021).
- M. Pretko and L. Radzihovsky, Fracton-elasticity duality, Phys. Rev. Lett. 120, 195301 (2018).
- A. Gromov, Chiral Topological Elasticity and Fracton Order, Phys. Rev. Lett. 122, 076403 (2019).
- M. Pretko, Z. Zhai, and L. Radzihovsky, Crystal-to-fracton tensor gauge theory dualities, Phys. Rev. B 100, 134113 (2019).
- A. Kumar and A. C. Potter, Symmetry-enforced fractonicity and two-dimensional quantum crystal melting, Phys. Rev. B 100, 045119 (2019).
- Z. Zhai and L. Radzihovsky, Two-dimensional melting via sine-Gordon duality, Phys. Rev. B 100, 094105 (2019).
- L. Radzihovsky, Quantum Smectic Gauge Theory, Phys. Rev. Lett. 125, 267601 (2020).
- Z. Zhai and L. Radzihovsky, Fractonic gauge theory of smectics, Annals of Physics Special Issue on Philip W. Anderson, 435, 168509 (2021).
- E. Lake, M. Hermele, and T. Senthil, Dipolar bose-hubbard model, Phys. Rev. B 106, 064511 (2022).
- E. Lake and T. Senthil, Non-fermi liquids from kinetic constraints in tilted optical lattices, Phys. Rev. Lett. 131, 043403 (2023).
- M. Pretko, Emergent gravity of fractons: Mach’s principle revisited, Phys. Rev. D 96, 024051 (2017d).
- X. Feng and B. Skinner, Hilbert space fragmentation produces an effective attraction between fractons, Phys. Rev. Res. 4, 013053 (2022).
- T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2003).
- see supplementary material.
- A. Prakash, A. Goriely, and S. L. Sondhi, Classical nonrelativistic fractons, Phys. Rev. B 109, 054313 (2024).
- J.-K. Yuan, S. A. Chen, and P. Ye, Fractonic superfluids, Phys. Rev. Res. 2, 023267 (2020).
- L. Radzihovsky, Lifshitz gauge duality, Phys. Rev. B 106, 224510 (2022).
- H. F. Song, S. Rachel, and K. Le Hur, General relation between entanglement and fluctuations in one dimension, Phys. Rev. B 82, 012405 (2010).
- A. G. Abanov, D. A. Ivanov, and Y. Qian, Quantum fluctuations of one-dimensional free fermions and Fisher–Hartwig formula for Toeplitz determinants, J. Phys. A: Math. Theor. 44, 485001 (2011).
- C. Stahl, E. Lake, and R. Nandkishore, Spontaneous breaking of multipole symmetries, Phys. Rev. B 105, 155107 (2022).
- J. Hauschild and F. Pollmann, Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy), SciPost Physics Lecture Notes , 5 (2018).
- All data and simulation codes are available upon reasonable request at 10.5281/zenodo.10035551.
- S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer–wolff transformation for quantum many-body systems, Annals of Physics 326, 2793 (2011).
- G. H. Wannier, Wave functions and effective hamiltonian for bloch electrons in an electric field, Phys. Rev. 117, 432 (1960).
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
- G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension, Phys. Rev. Lett. 98, 070201 (2007).
- S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a global symmetry, Phys. Rev. A 82, 050301(R) (2010).
- S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network states and algorithms in the presence of a global u(1) symmetry, Phys. Rev. B 83, 115125 (2011).
- G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett. 93, 040502 (2004).