Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian Processes for Active Learning (2210.10964v1)

Published 20 Oct 2022 in cs.LG and stat.ML

Abstract: Gaussian processes are Bayesian non-parametric models used in many areas. In this work, we propose a Non-stationary Heteroscedastic Gaussian process model which can be learned with gradient-based techniques. We demonstrate the interpretability of the proposed model by separating the overall uncertainty into aleatoric (irreducible) and epistemic (model) uncertainty. We illustrate the usability of derived epistemic uncertainty on active learning problems. We demonstrate the efficacy of our model with various ablations on multiple datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.