Papers
Topics
Authors
Recent
Search
2000 character limit reached

NGEP: A Graph-based Event Planning Framework for Story Generation

Published 19 Oct 2022 in cs.CL and cs.AI | (2210.10602v1)

Abstract: To improve the performance of long text generation, recent studies have leveraged automatically planned event structures (i.e. storylines) to guide story generation. Such prior works mostly employ end-to-end neural generation models to predict event sequences for a story. However, such generation models struggle to guarantee the narrative coherence of separate events due to the hallucination problem, and additionally the generated event sequences are often hard to control due to the end-to-end nature of the models. To address these challenges, we propose NGEP, an novel event planning framework which generates an event sequence by performing inference on an automatically constructed event graph and enhances generalisation ability through a neural event advisor. We conduct a range of experiments on multiple criteria, and the results demonstrate that our graph-based neural framework outperforms the state-of-the-art (SOTA) event planning approaches, considering both the performance of event sequence generation and the effectiveness on the downstream task of story generation.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.