Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 146 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Physics-Driven Convolutional Autoencoder Approach for CFD Data Compressions (2210.09262v1)

Published 17 Oct 2022 in physics.flu-dyn

Abstract: With the growing size and complexity of turbulent flow models, data compression approaches are of the utmost importance to analyze, visualize, or restart the simulations. Recently, in-situ autoencoder-based compression approaches have been proposed and shown to be effective at producing reduced representations of turbulent flow data. However, these approaches focus solely on training the model using point-wise sample reconstruction losses that do not take advantage of the physical properties of turbulent flows. In this paper, we show that training autoencoders with additional physics-informed regularizations, e.g., enforcing incompressibility and preserving enstrophy, improves the compression model in three ways: (i) the compressed data better conform to known physics for homogeneous isotropic turbulence without negatively impacting point-wise reconstruction quality, (ii) inspection of the gradients of the trained model uncovers changes to the learned compression mapping that can facilitate the use of explainability techniques, and (iii) as a performance byproduct, training losses are shown to converge up to 12x faster than the baseline model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube