Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Physics-informed Diffusion Model for High-fidelity Flow Field Reconstruction (2211.14680v2)

Published 26 Nov 2022 in cs.LG and physics.flu-dyn

Abstract: Machine learning models are gaining increasing popularity in the domain of fluid dynamics for their potential to accelerate the production of high-fidelity computational fluid dynamics data. However, many recently proposed machine learning models for high-fidelity data reconstruction require low-fidelity data for model training. Such requirement restrains the application performance of these models, since their data reconstruction accuracy would drop significantly if the low-fidelity input data used in model test has a large deviation from the training data. To overcome this restraint, we propose a diffusion model which only uses high-fidelity data at training. With different configurations, our model is able to reconstruct high-fidelity data from either a regular low-fidelity sample or a sparsely measured sample, and is also able to gain an accuracy increase by using physics-informed conditioning information from a known partial differential equation when that is available. Experimental results demonstrate that our model can produce accurate reconstruction results for 2d turbulent flows based on different input sources without retraining.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dule Shu (5 papers)
  2. Zijie Li (14 papers)
  3. Amir Barati Farimani (121 papers)
Citations (99)

Summary

We haven't generated a summary for this paper yet.