Papers
Topics
Authors
Recent
Search
2000 character limit reached

Language-agnostic Code-Switching in Sequence-To-Sequence Speech Recognition

Published 17 Oct 2022 in cs.CL, cs.SD, and eess.AS | (2210.08992v2)

Abstract: Code-Switching (CS) is referred to the phenomenon of alternately using words and phrases from different languages. While today's neural end-to-end (E2E) models deliver state-of-the-art performances on the task of automatic speech recognition (ASR) it is commonly known that these systems are very data-intensive. However, there is only a few transcribed and aligned CS speech available. To overcome this problem and train multilingual systems which can transcribe CS speech, we propose a simple yet effective data augmentation in which audio and corresponding labels of different source languages are concatenated. By using this training data, our E2E model improves on transcribing CS speech. It also surpasses monolingual models on monolingual tests. The results show that this augmentation technique can even improve the model's performance on inter-sentential language switches not seen during training by 5,03% WER.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.