Papers
Topics
Authors
Recent
2000 character limit reached

Approximating Continuous Convolutions for Deep Network Compression (2210.08951v1)

Published 17 Oct 2022 in cs.CV

Abstract: We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with fewer parameters than conventional operations. Our method is able to reduce the size of trained CNN layers requiring only a small amount of fine-tuning. We show that our method is able to compress existing deep network models by half whilst losing only 1.86% accuracy. Further, we demonstrate that our method is compatible with other compression methods like quantisation allowing for further reductions in model size.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.