Papers
Topics
Authors
Recent
2000 character limit reached

$K_1$ and $K$-groups of absolute matrix order unit spaces (2210.08774v1)

Published 17 Oct 2022 in math.FA

Abstract: In this paper, we describe the Grothendieck groups $K_1(V)$ and $K(V)$ of an absolute matrix order unit space $V$ for unitary and partial unitary elements respectively. For this purpose, we study some basic properties of unitary and partial unitary elements, and define their path homotopy equivalence. The construction of $K(V)$ follows in a almost similar manner as that of $K_1(V).$ We prove that $K_1(V)$ and $K(V)$ are ordered abelian groups. We also prove that $K_1(V)$ and $K(V)$ are functors from the category of absolute matrix order unit spaces with morphisms as unital completely $\vert \cdot \vert$-preserving maps to the category of ordered abelian groups. Later, we show that under certain conditions, quotient of $K(V)$ is isomorphic to the direct sum of $K_0(V)$ and $K_1(V),$ where $K_0(V)$ is the Grothendieck group for order projections.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.