Papers
Topics
Authors
Recent
Search
2000 character limit reached

Latent process models for functional network data

Published 14 Oct 2022 in stat.ME | (2210.07491v3)

Abstract: Network data are often sampled with auxiliary information or collected through the observation of a complex system over time, leading to multiple network snapshots indexed by a continuous variable. Many methods in statistical network analysis are traditionally designed for a single network, and can be applied to an aggregated network in this setting, but that approach can miss important functional structure. Here we develop an approach to estimating the expected network explicitly as a function of a continuous index, be it time or another indexing variable. We parameterize the network expectation through low dimensional latent processes, whose components we represent with a fixed, finite-dimensional functional basis. We derive a gradient descent estimation algorithm, establish theoretical guarantees for recovery of the low dimensional structure, compare our method to competitors, and apply it to a data set of international political interactions over time, showing our proposed method to adapt well to data, outperform competitors, and provide interpretable and meaningful results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.