Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep learning waveform anomaly detector for numerical relativity catalogs (2210.07299v2)

Published 13 Oct 2022 in gr-qc

Abstract: Numerical Relativity has been of fundamental importance for studying compact binary coalescence dynamics, waveform modelling, and eventually for gravitational waves observations. As the sensitivity of the detector network improves, more precise template modelling will be necessary to guarantee a more accurate estimation of astrophysical parameters. To help improve the accuracy of numerical relativity catalogs, we developed a deep learning model capable of detecting anomalous waveforms. We analyzed 1341 binary black hole simulations from the SXS catalog with various mass-ratios and spins, considering waveform dominant and higher modes. In the set of waveform analyzed, we found and categorised seven types of anomalies appearing in the coalescence phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  2. F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  3. L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise, Dover books on physics and mathematical physics (Prentice-Hall, Englewood Cliffs, NJ, 1962).
  4. B. P. Abbott et al. (LIGO Scientific, Virgo), Class. Quant. Grav. 37, 055002 (2020a), arXiv:1908.11170 [gr-qc] .
  5. G. Pratten et al., Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
  6. S. Ossokine et al., Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
  7. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 102, 043015 (2020b), arXiv:2004.08342 [astro-ph.HE] .
  8. R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 896, L44 (2020c), arXiv:2006.12611 [astro-ph.HE] .
  9. H. Abe et al. (KAGRA), Galaxies 10, 63 (2022).
  10. M. Pürrer and C.-J. Haster, Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-qc] .
  11. M. Boyle et al., Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
  12. B. Szilágyi, International Journal of Modern Physics D 23, 1430014 (2014).
  13. T. Pereira, “Waveform AnomaLy DetectOr (WALDO),”  (2022).
  14. ‘‘Waveform anomaly detector,” https://github.com/tiberioap/grav_waldo, accessed: 2023-12.
  15. “Waveform anomaly detector,” https://ascl.net/2301.021, accessed: 2023-12.
  16. L. Haegel and S. Husa, Class. Quant. Grav. 37, 135005 (2020), arXiv:1911.01496 [gr-qc] .
  17. E. Cuoco et al., Mach. Learn. Sci. Tech. 2, 011002 (2021), arXiv:2005.03745 [astro-ph.HE] .
  18. H. Yu and R. X. Adhikari, “Nonlinear noise regression in gravitational-wave detectors with convolutional neural networks,”  (2021).
  19. S.-C. Fragkouli, P. Nousi, N. Passalis, P. Iosif, N. Stergioulas,  and A. Tefas, “Deep residual error and bag-of-tricks learning for gravitational wave surrogate modeling,”  (2022).
  20. A. H. M. et al., Physical Review Letters 111 (2013), 10.1103/physrevlett.111.241104.
  21. P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011), arXiv:0909.2867 [gr-qc] .
  22. O. Ronneberger, P. Fischer,  and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,”  (2015).
  23. “Sxs gravitational waveform database: Important information,” https://data.black-holes.org/waveforms/index.html, accessed: 2023-08.
  24. E. W. Leaver, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 402, 285 (1985).
  25. M. Maggiore, Physical Review Letters 100 (2008), 10.1103/physrevlett.100.141301.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com