Deep learning waveform anomaly detector for numerical relativity catalogs (2210.07299v2)
Abstract: Numerical Relativity has been of fundamental importance for studying compact binary coalescence dynamics, waveform modelling, and eventually for gravitational waves observations. As the sensitivity of the detector network improves, more precise template modelling will be necessary to guarantee a more accurate estimation of astrophysical parameters. To help improve the accuracy of numerical relativity catalogs, we developed a deep learning model capable of detecting anomalous waveforms. We analyzed 1341 binary black hole simulations from the SXS catalog with various mass-ratios and spins, considering waveform dominant and higher modes. In the set of waveform analyzed, we found and categorised seven types of anomalies appearing in the coalescence phases.
- J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
- L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise, Dover books on physics and mathematical physics (Prentice-Hall, Englewood Cliffs, NJ, 1962).
- B. P. Abbott et al. (LIGO Scientific, Virgo), Class. Quant. Grav. 37, 055002 (2020a), arXiv:1908.11170 [gr-qc] .
- G. Pratten et al., Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
- S. Ossokine et al., Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 102, 043015 (2020b), arXiv:2004.08342 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 896, L44 (2020c), arXiv:2006.12611 [astro-ph.HE] .
- H. Abe et al. (KAGRA), Galaxies 10, 63 (2022).
- M. Pürrer and C.-J. Haster, Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-qc] .
- M. Boyle et al., Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
- B. Szilágyi, International Journal of Modern Physics D 23, 1430014 (2014).
- T. Pereira, “Waveform AnomaLy DetectOr (WALDO),” (2022).
- ‘‘Waveform anomaly detector,” https://github.com/tiberioap/grav_waldo, accessed: 2023-12.
- “Waveform anomaly detector,” https://ascl.net/2301.021, accessed: 2023-12.
- L. Haegel and S. Husa, Class. Quant. Grav. 37, 135005 (2020), arXiv:1911.01496 [gr-qc] .
- E. Cuoco et al., Mach. Learn. Sci. Tech. 2, 011002 (2021), arXiv:2005.03745 [astro-ph.HE] .
- H. Yu and R. X. Adhikari, “Nonlinear noise regression in gravitational-wave detectors with convolutional neural networks,” (2021).
- S.-C. Fragkouli, P. Nousi, N. Passalis, P. Iosif, N. Stergioulas, and A. Tefas, “Deep residual error and bag-of-tricks learning for gravitational wave surrogate modeling,” (2022).
- A. H. M. et al., Physical Review Letters 111 (2013), 10.1103/physrevlett.111.241104.
- P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011), arXiv:0909.2867 [gr-qc] .
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” (2015).
- “Sxs gravitational waveform database: Important information,” https://data.black-holes.org/waveforms/index.html, accessed: 2023-08.
- E. W. Leaver, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 402, 285 (1985).
- M. Maggiore, Physical Review Letters 100 (2008), 10.1103/physrevlett.100.141301.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.