Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Generating gravitational waveform libraries of exotic compact binaries with deep learning (2203.01267v1)

Published 2 Mar 2022 in gr-qc

Abstract: Current gravitational wave (GW) detections rely on the existence of libraries of theoretical waveforms. Consequently, finding new physics with GWs requires libraries of non-standard models, which are computationally demanding. We discuss how deep learning frameworks can be used to generate new waveforms "learned" from a simulation dataset obtained, say, from numerical relativity simulations. Concretely, we use the WaveGAN architecture of a generative adversarial network (GAN). As a proof of concept we provide this neural network (NN) with a sample of ($>500$) waveforms from the collisions of exotic compact objects (Proca stars), obtained from numerical relativity simulations. Dividing the sample into a training and a validation set, we show that after a sufficiently large number of training epochs the NN can produce from 12\% to 25\% of the synthetic waveforms with an overlapping match of at least 95\% with the ones from the validation set. We also demonstrate that a NN can be used to predict the overlapping match score, with 90\% of accuracy, of new synthetic samples. These are encouraging results for using GANs for data augmentation and interpolation in the context of GWs, to cover the full parameter space of, say, exotic compact binaries, without the need of intensive numerical relativity simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.