Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Emergent scale-free networks (2210.06453v2)

Published 12 Oct 2022 in nlin.AO and physics.app-ph

Abstract: Many complex systems--from social and communication networks to biological networks and the Internet--are thought to exhibit scale-free structure. However, prevailing explanations rely on the constant addition of new nodes, an assumption that fails dramatically in some real-world settings. Here, we propose a model in which nodes are allowed to die, and their connections rearrange under a mixture of preferential and random attachment. With these simple dynamics, we show that networks self-organize towards scale-free structure, with a power-law exponent $\gamma = 1 + \frac{1}{p}$ that depends only on the proportion $p$ of preferential (rather than random) attachment. Applying our model to several real networks, we infer $p$ directly from data, and predict the relationship between network size and degree heterogeneity. Together, these results establish that realistic scale-free structure can emerge naturally in networks of constant size and density, with broad implications for the structure and function of complex systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.