Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty quantification and global sensitivity analysis of seismic fragility curves using kriging

Published 12 Oct 2022 in stat.AP | (2210.06266v1)

Abstract: Seismic fragility curves have been introduced as key components of Seismic Probabilistic Risk Assessment studies. They express the probability of failure of mechanical structures conditional to a seismic intensity measure and must take into account the inherent uncertainties in such studies, the so-called epistemic uncertainties (i.e. coming from the uncertainty on the mechanical parameters of the structure) and the aleatory uncertainties (i.e. coming from the randomness of the seismic ground motions). For simulation-based approaches we propose a methodology to build and calibrate a Gaussian process surrogate model to estimate a family of non-parametric seismic fragility curves for a mechanical structure by propagating both the surrogate model uncertainty and the epistemic ones. Gaussian processes have indeed the main advantage to propose both a predictor and an assessment of the uncertainty of its predictions. In addition, we extend this methodology to sensitivity analysis. Global sensitivity indices such as aggregated Sobol indices and kernel-based indices are proposed to know how the uncertainty on the seismic fragility curves is apportioned according to each uncertain mechanical parameter. This comprehensive Uncertainty Quantification framework is finally applied to an industrial test case consisting in a part of a piping system of a Pressurized Water Reactor.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.