Flow-oriented perturbation theory (2210.05532v2)
Abstract: We introduce a new diagrammatic approach to perturbative quantum field theory, which we call flow-oriented perturbation theory (FOPT). Within it, Feynman graphs are replaced by strongly connected directed graphs (digraphs). FOPT is a coordinate space analogue of time-ordered perturbation theory and loop-tree duality, but it has the advantage of having combinatorial and canonical Feynman rules, combined with a simplified $i\varepsilon$ dependence of the resulting integrals. Moreover, we introduce a novel digraph-based representation for the S-matrix. The associated integrals involve the Fourier transform of the flow polytope. Due to this polytope's properties, our S-matrix representation exhibits manifest infrared singularity factorization on a per-diagram level. Our findings reveal an interesting interplay between spurious singularities and Fourier transforms of polytopes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.