Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Learning-Aided Delay-Tolerant Zero-Forcing Precoding in Cell-Free Massive MIMO (2210.05229v1)

Published 11 Oct 2022 in cs.IT, eess.SP, and math.IT

Abstract: In the context of cell-free massive multi-input multi-output (CFmMIMO), zero-forcing precoding (ZFP) is superior in terms of spectral efficiency. However, it suffers from channel aging owing to fronthaul and processing delays. In this paper, we propose a robust scheme coined delay-tolerant zero-forcing precoding (DT-ZFP), which exploits deep learning-aided channel prediction to alleviate the effect of outdated channel state information (CSI). A predictor consisting of a bank of user-specific predictive modules is specifically designed for such a multi-user scenario. Leveraging the degree of freedom brought by the prediction horizon, the delivery of CSI and precoded data through a fronthaul network and the transmission of user data and pilots over an air interface can be parallelized. Therefore, DT-ZFP not only effectively combats channel aging but also avoids the inefficient Stop-and-Wait mechanism of the canonical ZFP in CFmMIMO.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.