Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CoBERT: Self-Supervised Speech Representation Learning Through Code Representation Learning (2210.04062v3)

Published 8 Oct 2022 in cs.SD and eess.AS

Abstract: Speech is the surface form of a finite set of phonetic units, which can be represented by discrete codes. We propose the Code BERT (CoBERT) approach for self-supervised speech representation learning. The idea is to convert an utterance to a sequence of discrete codes, and perform code representation learning, where we predict the code representations based on a masked view of the original speech input. Unlike the prior self-distillation approaches of which the teacher and the student are of the same modality, our target model predicts representations from a different modality. CoBERT outperforms the most recent state-of-the-art performance on the ASR task and brings significant improvements on the SUPERB speech translation (ST) task. Our code and models are released at https://github.com/mct10/CoBERT.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.