An Efficient and Continuous Voronoi Density Estimator (2210.03964v2)
Abstract: We introduce a non-parametric density estimator deemed Radial Voronoi Density Estimator (RVDE). RVDE is grounded in the geometry of Voronoi tessellations and as such benefits from local geometric adaptiveness and broad convergence properties. Due to its radial definition RVDE is continuous and computable in linear time with respect to the dataset size. This amends for the main shortcomings of previously studied VDEs, which are highly discontinuous and computationally expensive. We provide a theoretical study of the modes of RVDE as well as an empirical investigation of its performance on high-dimensional data. Results show that RVDE outperforms other non-parametric density estimators, including recently introduced VDEs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.