Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 136 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$K$-rings of wonderful varieties and matroids (2210.03169v2)

Published 6 Oct 2022 in math.AG and math.CO

Abstract: We study the $K$-ring of the wonderful variety of a hyperplane arrangement and give a combinatorial presentation that depends only on the underlying matroid. We use this combinatorial presentation to define the $K$-ring of an arbitrary loopless matroid. We construct an exceptional isomorphism, with integer coefficients, to the Chow ring of the matroid that satisfies a Hirzebruch--Riemann--Roch-type formula, generalizing a recent construction of Berget, Eur, Spink, and Tseng for the permutohedral variety (the wonderful variety of a Boolean arrangement). As an application, we give combinatorial formulas for Euler characteristics of arbitrary line bundles on wonderful varieties. We give analogous constructions and results for augmented wonderful varieties, and for Deligne--Mumford--Knudsen moduli spaces of stable rational curves with marked points.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube