Entanglement Entropy of Free Fermions in Timelike Slices (2210.03134v4)
Abstract: We define the entanglement entropy of free fermion quantum states in an arbitrary spacetime slice of a discrete set of points, and particularly investigate timelike (causal) slices. For 1D lattice free fermions with an energy bandwidth $E_0$, we calculate the time-direction entanglement entropy $S_A$ in a time-direction slice of a set of times $t_n=n\tau$ ($1\le n\le K$) spanning a time length $t$ on the same site. For zero temperature ground states, we find that $S_A$ shows volume law when $\tau\gg\tau_0=2\pi/E_0$; in contrast, $S_A\sim \frac{1}{3}\ln t$ when $\tau=\tau_0$, and $S_A\sim\frac{1}{6}\ln t$ when $\tau<\tau_0$, resembling the Calabrese-Cardy formula for one flavor of nonchiral and chiral fermion, respectively. For finite temperature thermal states, the mutual information also saturates when $\tau<\tau_0$. For non-eigenstates, volume law in $t$ and signatures of the Lieb-Robinson bound velocity can be observed in $S_A$. For generic spacetime slices with one point per site, the zero temperature entanglement entropy shows a clear transition from area law to volume law when the slice varies from spacelike to timelike.
- R. Horodecki and P. Horodecki, Quantum redundancies and local realism, Physics Letters A 194, 147 (1994).
- M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1 (1996).
- N. J. Cerf and C. Adami, Negative entropy and information in quantum mechanics, Phys. Rev. Lett. 79, 5194 (1997).
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
- N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696 (1935).
- J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
- M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993).
- M. B. Hastings, Entropy and entanglement in quantum ground states, Phys. Rev. B 76, 035114 (2007).
- J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
- J. L. Cardy and I. Peschel, Finite-size dependence of the free energy in two-dimensional critical systems, Nuclear Physics B 300, 377 (1988).
- P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).
- P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical and Theoretical 42, 504005 (2009).
- D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the widom conjecture, Phys. Rev. Lett. 96, 100503 (2006).
- M. M. Wolf, Violation of the entropic area law for fermions, Phys. Rev. Lett. 96, 010404 (2006).
- M. Cramer, J. Eisert, and M. B. Plenio, Statistics dependence of the entanglement entropy, Phys. Rev. Lett. 98, 220603 (2007).
- T. Barthel, M.-C. Chung, and U. Schollwöck, Entanglement scaling in critical two-dimensional fermionic and bosonic systems, Phys. Rev. A 74, 022329 (2006).
- A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
- M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
- B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications for topological order, Journal of Statistical Mechanics: Theory and Experiment 2013, 09005 (2013), arXiv:1306.5753 [cond-mat.dis-nn] .
- R. V. Jensen and R. Shankar, Statistical behavior in deterministic quantum systems with few degrees of freedom, Phys. Rev. Lett. 54, 1879 (1985).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7, 2333 (1973).
- S. W. Hawking, Particle creation by black holes, Communications In Mathematical Physics 43, 199 (1975).
- R. Bousso, The holographic principle, Rev. Mod. Phys. 74, 825 (2002).
- A. J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Phys. Rev. Lett. 54, 857 (1985).
- J. P. Paz and G. Mahler, Proposed test for temporal bell inequalities, Phys. Rev. Lett. 71, 3235 (1993).
- O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nature Communications 3, 1092 (2012), arXiv:1105.4464 [quant-ph] .
- J. Fitzsimons, J. Jones, and V. Vedral, Quantum correlations which imply causation, arXiv e-prints , arXiv:1302.2731 (2013), arXiv:1302.2731 [quant-ph] .
- Č. Brukner, Quantum causality, Nature Physics 10, 259 (2014).
- Č. Brukner, Bounding quantum correlations with indefinite causal order, New Journal of Physics 17, 083034 (2015), arXiv:1404.0721 [quant-ph] .
- D. Jia, Generalizing entanglement, Phys. Rev. A 96, 062132 (2017).
- E. Gillman, F. Carollo, and I. Lesanovsky, Quantum and classical temporal correlations in (1+1)D11D(1+1)\mathrm{D}( 1 + 1 ) roman_D quantum cellular automata, Phys. Rev. Lett. 127, 230502 (2021).
- T. M. Nebabu and X. Qi, Bulk reconstruction from generalized free fields (2023), arXiv:2306.16687 [hep-th] .
- A. Lerose, M. Sonner, and D. A. Abanin, Influence matrix approach to many-body floquet dynamics, Phys. Rev. X 11, 021040 (2021a).
- A. Lerose, M. Sonner, and D. A. Abanin, Scaling of temporal entanglement in proximity to integrability, Phys. Rev. B 104, 035137 (2021b).
- M. Sonner, A. Lerose, and D. A. Abanin, Influence functional of many-body systems: Temporal entanglement and matrix-product state representation, Annals of Physics 435, 168677 (2021), special issue on Philip W. Anderson.
- R. Feynman and F. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Annals of Physics 24, 118 (1963).
- A. Müller-Hermes, J. I. Cirac, and M. C. Bañuls, Tensor network techniques for the computation of dynamical observables in one-dimensional quantum spin systems, New Journal of Physics 14, 075003 (2012).
- M. B. Hastings and R. Mahajan, Connecting entanglement in time and space: Improving the folding algorithm, Phys. Rev. A 91, 032306 (2015).
- See Supplemental Material for details.
- I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
- E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Communications in Mathematical Physics 28, 251 (1972).
- H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
- B. Lian, Conserved quantities from entanglement hamiltonian, Phys. Rev. B 105, 035106 (2022).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.