Papers
Topics
Authors
Recent
2000 character limit reached

Entanglement Entropy of Free Fermions in Timelike Slices (2210.03134v4)

Published 6 Oct 2022 in cond-mat.stat-mech, hep-th, and quant-ph

Abstract: We define the entanglement entropy of free fermion quantum states in an arbitrary spacetime slice of a discrete set of points, and particularly investigate timelike (causal) slices. For 1D lattice free fermions with an energy bandwidth $E_0$, we calculate the time-direction entanglement entropy $S_A$ in a time-direction slice of a set of times $t_n=n\tau$ ($1\le n\le K$) spanning a time length $t$ on the same site. For zero temperature ground states, we find that $S_A$ shows volume law when $\tau\gg\tau_0=2\pi/E_0$; in contrast, $S_A\sim \frac{1}{3}\ln t$ when $\tau=\tau_0$, and $S_A\sim\frac{1}{6}\ln t$ when $\tau<\tau_0$, resembling the Calabrese-Cardy formula for one flavor of nonchiral and chiral fermion, respectively. For finite temperature thermal states, the mutual information also saturates when $\tau<\tau_0$. For non-eigenstates, volume law in $t$ and signatures of the Lieb-Robinson bound velocity can be observed in $S_A$. For generic spacetime slices with one point per site, the zero temperature entanglement entropy shows a clear transition from area law to volume law when the slice varies from spacelike to timelike.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. R. Horodecki and P. Horodecki, Quantum redundancies and local realism, Physics Letters A 194, 147 (1994).
  2. M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1 (1996).
  3. N. J. Cerf and C. Adami, Negative entropy and information in quantum mechanics, Phys. Rev. Lett. 79, 5194 (1997).
  4. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
  5. N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696 (1935).
  6. J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
  7. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993).
  8. M. B. Hastings, Entropy and entanglement in quantum ground states, Phys. Rev. B 76, 035114 (2007).
  9. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  10. J. L. Cardy and I. Peschel, Finite-size dependence of the free energy in two-dimensional critical systems, Nuclear Physics B 300, 377 (1988).
  11. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).
  12. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical and Theoretical 42, 504005 (2009).
  13. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the widom conjecture, Phys. Rev. Lett. 96, 100503 (2006).
  14. M. M. Wolf, Violation of the entropic area law for fermions, Phys. Rev. Lett. 96, 010404 (2006).
  15. M. Cramer, J. Eisert, and M. B. Plenio, Statistics dependence of the entanglement entropy, Phys. Rev. Lett. 98, 220603 (2007).
  16. T. Barthel, M.-C. Chung, and U. Schollwöck, Entanglement scaling in critical two-dimensional fermionic and bosonic systems, Phys. Rev. A 74, 022329 (2006).
  17. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
  18. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
  19. B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications for topological order, Journal of Statistical Mechanics: Theory and Experiment 2013, 09005 (2013), arXiv:1306.5753 [cond-mat.dis-nn] .
  20. R. V. Jensen and R. Shankar, Statistical behavior in deterministic quantum systems with few degrees of freedom, Phys. Rev. Lett. 54, 1879 (1985).
  21. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  22. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  23. J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7, 2333 (1973).
  24. S. W. Hawking, Particle creation by black holes, Communications In Mathematical Physics 43, 199 (1975).
  25. R. Bousso, The holographic principle, Rev. Mod. Phys. 74, 825 (2002).
  26. A. J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Phys. Rev. Lett. 54, 857 (1985).
  27. J. P. Paz and G. Mahler, Proposed test for temporal bell inequalities, Phys. Rev. Lett. 71, 3235 (1993).
  28. O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nature Communications 3, 1092 (2012), arXiv:1105.4464 [quant-ph] .
  29. J. Fitzsimons, J. Jones, and V. Vedral, Quantum correlations which imply causation, arXiv e-prints , arXiv:1302.2731 (2013), arXiv:1302.2731 [quant-ph] .
  30. Č. Brukner, Quantum causality, Nature Physics 10, 259 (2014).
  31. Č. Brukner, Bounding quantum correlations with indefinite causal order, New Journal of Physics 17, 083034 (2015), arXiv:1404.0721 [quant-ph] .
  32. D. Jia, Generalizing entanglement, Phys. Rev. A 96, 062132 (2017).
  33. E. Gillman, F. Carollo, and I. Lesanovsky, Quantum and classical temporal correlations in (1+1)⁢D11D(1+1)\mathrm{D}( 1 + 1 ) roman_D quantum cellular automata, Phys. Rev. Lett. 127, 230502 (2021).
  34. T. M. Nebabu and X. Qi, Bulk reconstruction from generalized free fields (2023), arXiv:2306.16687 [hep-th] .
  35. A. Lerose, M. Sonner, and D. A. Abanin, Influence matrix approach to many-body floquet dynamics, Phys. Rev. X 11, 021040 (2021a).
  36. A. Lerose, M. Sonner, and D. A. Abanin, Scaling of temporal entanglement in proximity to integrability, Phys. Rev. B 104, 035137 (2021b).
  37. M. Sonner, A. Lerose, and D. A. Abanin, Influence functional of many-body systems: Temporal entanglement and matrix-product state representation, Annals of Physics 435, 168677 (2021), special issue on Philip W. Anderson.
  38. R. Feynman and F. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Annals of Physics 24, 118 (1963).
  39. A. Müller-Hermes, J. I. Cirac, and M. C. Bañuls, Tensor network techniques for the computation of dynamical observables in one-dimensional quantum spin systems, New Journal of Physics 14, 075003 (2012).
  40. M. B. Hastings and R. Mahajan, Connecting entanglement in time and space: Improving the folding algorithm, Phys. Rev. A 91, 032306 (2015).
  41. See Supplemental Material for details.
  42. I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
  43. E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Communications in Mathematical Physics 28, 251 (1972).
  44. H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
  45. B. Lian, Conserved quantities from entanglement hamiltonian, Phys. Rev. B 105, 035106 (2022).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.