Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Applications of object detection networks at high-power laser systems and experiments (2210.02539v1)

Published 5 Oct 2022 in physics.plasm-ph, physics.acc-ph, physics.data-an, and physics.optics

Abstract: The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser laboratory. In this manuscript, three exemplary applications are presented. We show that the plasma waves in a laser-plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over one thousand laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and offline experiment analysis, even with small training sets. We believe that the presented methodology is adaptable yet robust, and we encourage further applications in high-power laser facilities regarding the control and diagnostic tools, especially for those involving image data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.