Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neural Distillation as a State Representation Bottleneck in Reinforcement Learning (2210.02224v1)

Published 5 Oct 2022 in cs.LG and cs.AI

Abstract: Learning a good state representation is a critical skill when dealing with multiple tasks in Reinforcement Learning as it allows for transfer and better generalization between tasks. However, defining what constitute a useful representation is far from simple and there is so far no standard method to find such an encoding. In this paper, we argue that distillation -- a process that aims at imitating a set of given policies with a single neural network -- can be used to learn a state representation displaying favorable characteristics. In this regard, we define three criteria that measure desirable features of a state encoding: the ability to select important variables in the input space, the ability to efficiently separate states according to their corresponding optimal action, and the robustness of the state encoding on new tasks. We first evaluate these criteria and verify the contribution of distillation on state representation on a toy environment based on the standard inverted pendulum problem, before extending our analysis on more complex visual tasks from the Atari and Procgen benchmarks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.