Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deconstructing experimental decay energy spectra: the $^{26}$O case (2210.00157v3)

Published 1 Oct 2022 in nucl-th and nucl-ex

Abstract: In nuclear reaction experiments, the measured decay energy spectra can give insights into the shell structure of decaying systems. However, extracting the underlying physics from the measurements is challenging due to detector resolution and acceptance effects. The Richardson-Lucy (RL) algorithm, a deblurring method that is commonly used in optics and has proven to be a successful technique for restoring images, was applied to our experimental nuclear physics data. The only inputs to the method are the observed energy spectrum and the detector's response matrix also known as the transfer matrix. We demonstrate that the technique can help access information about the shell structure of particle-unbound systems from the measured decay energy spectrum that isn't immediately accessible via traditional approaches such as chi-square fitting. For a similar purpose, we developed a machine learning model that uses a deep neural network (DNN) classifier to identify resonance states from the measured decay energy spectrum. We tested the performance of both methods on simulated data and experimental measurements. Then, we applied both algorithms to the decay energy spectrum of ${26}\mathrm{O} \rightarrow {24}\mathrm{O}$ + n + n measured via invariant mass spectroscopy. The resonance states restored using the RL algorithm to deblur the measured decay energy spectrum agree with those found by the DNN classifier. Both deblurring and DNN approaches suggest that the raw decay energy spectrum of ${26}\mathrm{O}$ exhibits three peaks at approximately 0.15~MeV, 1.50~MeV, and 5.00~MeV, with half-widths of 0.29~MeV, 0.80~MeV, and 1.85~MeV, respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.