Inhomogeneity of rotating gluon plasma and Tolman-Ehrenfest law in imaginary time: lattice results for fast imaginary rotation (2209.15534v1)
Abstract: We present the results of first-principle numerical simulations of Euclidean SU(3) Yang-Mills plasma rotating with a high imaginary angular frequency. The rigid Euclidean rotation is introduced via ``rotwisted'' boundary conditions along imaginary time direction. The Polyakov loop in the co-rotating Euclidean reference frame shows the emergence of a spatially inhomogeneous confining-deconfining phase through a broad crossover transition. A continuation of our numerical results to Minkowski spacetime suggests that the gluon plasma, rotating at real angular frequencies, produces a new inhomogeneous phase possessing the confining phase near the rotation axis and the deconfinement phase in the outer regions. The inhomogeneous phase structure has a purely kinematic origin, rooted in the Tolman-Ehrenfest effect in a rotating medium. We also derive the Euclidean version of the Tolman-Ehrenfest law in imaginary time formalism and discuss two definitions of temperature at imaginary Euclidean rotation.
- L. Adamczyk et al. (STAR), Nature 548, 62 (2017), arXiv:1701.06657 [nucl-ex] .
- W.-T. Deng and X.-G. Huang, Phys. Rev. C 93, 064907 (2016), arXiv:1603.06117 [nucl-th] .
- F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020), arXiv:2003.03640 [nucl-ex] .
- Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302 (2016), arXiv:1606.03808 [hep-ph] .
- M. N. Chernodub and S. Gongyo, JHEP 01, 136 (2017a), arXiv:1611.02598 [hep-th] .
- M. N. Chernodub and S. Gongyo, Phys. Rev. D 95, 096006 (2017b), arXiv:1702.08266 [hep-th] .
- M. N. Chernodub, Phys. Rev. D 103, 054027 (2021), arXiv:2012.04924 [hep-ph] .
- V. E. Ambruş and E. Winstanley, Phys. Lett. B 734, 296 (2014), arXiv:1401.6388 [hep-th] .
- V. E. Ambrus and E. Winstanley, Phys. Rev. D 93, 104014 (2016), arXiv:1512.05239 [hep-th] .
- S. J. Barnett, Phys. Rev. 6, 239 (1915).
- G. Yadav, (2022), arXiv:2203.11959 [hep-th] .
- A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013), arXiv:1303.6292 [hep-lat] .
- M. N. Chernodub, (2022a), arXiv:2208.04808 [hep-th] .
- J. Cork, J. Math. Phys. 59, 062902 (2018), [Addendum: J.Math.Phys. 59, 079901 (2018)], arXiv:1711.04599 [hep-th] .
- R. C. Tolman, Phys. Rev. 35, 904 (1930).
- R. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791 (1930).
- L. Giusti and H. B. Meyer, Phys. Rev. Lett. 106, 131601 (2011a), arXiv:1011.2727 [hep-lat] .
- L. Giusti and H. B. Meyer, JHEP 11, 087 (2011b), arXiv:1110.3136 [hep-lat] .
- L. Giusti and M. Pepe, Phys. Rev. D 91, 114504 (2015), arXiv:1503.07042 [hep-lat] .
- M. Chernodub, (2022b), in preparation.
- C. Rovelli and M. Smerlak, Class. Quant. Grav. 28, 075007 (2011), arXiv:1005.2985 [gr-qc] .
- C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice, Vol. 788 (Springer, Berlin, 2010).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.