Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Formalized Class Group Computations and Integral Points on Mordell Elliptic Curves (2209.15492v2)

Published 30 Sep 2022 in cs.LO and math.NT

Abstract: Diophantine equations are a popular and active area of research in number theory. In this paper we consider Mordell equations, which are of the form $y2=x3+d$, where $d$ is a (given) nonzero integer number and all solutions in integers $x$ and $y$ have to be determined. One non-elementary approach for this problem is the resolution via descent and class groups. Along these lines we formalized in Lean 3 the resolution of Mordell equations for several instances of $d<0$. In order to achieve this, we needed to formalize several other theories from number theory that are interesting on their own as well, such as ideal norms, quadratic fields and rings, and explicit computations of the class number. Moreover we introduced new computational tactics in order to carry out efficiently computations in quadratic rings and beyond.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.