Papers
Topics
Authors
Recent
Search
2000 character limit reached

Discrete Microlocal Morse Theory

Published 29 Sep 2022 in math.GN, cs.CG, and math.AT | (2209.14993v3)

Abstract: We establish several results combining discrete Morse theory and microlocal sheaf theory in the setting of finite posets and simplicial complexes. Our primary tool is a computationally tractable description of the bounded derived category of sheaves on a poset with the Alexandrov topology. We prove that each bounded complex of sheaves on a finite poset admits a unique (up to isomorphism of complexes) minimal injective resolution, and we provide algorithms for computing minimal injective resolution of an injective complex, as well as several useful functors between derived categories of sheaves. For the constant sheaf on a simplicial complex, we give asymptotically tight bounds on the complexity of computing the minimal injective resolution using those algorithms. Our main result is a novel definition of the discrete microsupport of a bounded complex of sheaves on a finite poset. We detail several foundational properties of the discrete microsupport, as well as a microlocal generalization of the discrete homological Morse theorem and Morse inequalities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.