Exact augmented Lagrangian duality for mixed integer convex optimization (2209.13326v2)
Abstract: Augmented Lagrangian dual augments the classical Lagrangian dual with a non-negative non-linear penalty function of the violation of the relaxed/dualized constraints in order to reduce the duality gap. We investigate the cases in which mixed integer convex optimization problems have an exact penalty representation using sharp augmenting functions (norms as augmenting penalty functions). We present a generalizable constructive proof technique for proving existence of exact penalty representations for mixed integer convex programs under specific conditions using the associated value functions. This generalizes the recent results for MILP (Feizollahi, Ahmed and Sun, 2017) and MIQP (Gu, Ahmed and Dey 2020) whilst also providing an alternative proof for the aforementioned along with quantification of the finite penalty parameter in these cases.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.