Papers
Topics
Authors
Recent
2000 character limit reached

Tangential Tensor Fields on Deformable Surfaces -- How to Derive Consistent $L^2$-Gradient Flows

Published 27 Sep 2022 in math-ph, math.DG, and math.MP | (2209.13272v2)

Abstract: We consider gradient flows of surface energies which depend on the surface by a parameterization and on a tangential tensor field. The flow allows for dissipation by evolving the parameterization and the tensor field simultaneously. This requires the choice of a notation for independence. We introduce different gauges of surface independence and show their consequences for the evolution. In order to guarantee a decrease in energy, the gauge of surface independence and the time derivative have to be chosen consistently. We demonstrate the results for a surface Frank-Oseen-Hilfrich energy.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.