Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

IntereStyle: Encoding an Interest Region for Robust StyleGAN Inversion (2209.10811v2)

Published 22 Sep 2022 in cs.CV and cs.LG

Abstract: Recently, manipulation of real-world images has been highly elaborated along with the development of Generative Adversarial Networks (GANs) and corresponding encoders, which embed real-world images into the latent space. However, designing encoders of GAN still remains a challenging task due to the trade-off between distortion and perception. In this paper, we point out that the existing encoders try to lower the distortion not only on the interest region, e.g., human facial region but also on the uninterest region, e.g., background patterns and obstacles. However, most uninterest regions in real-world images are located at out-of-distribution (OOD), which are infeasible to be ideally reconstructed by generative models. Moreover, we empirically find that the uninterest region overlapped with the interest region can mangle the original feature of the interest region, e.g., a microphone overlapped with a facial region is inverted into the white beard. As a result, lowering the distortion of the whole image while maintaining the perceptual quality is very challenging. To overcome this trade-off, we propose a simple yet effective encoder training scheme, coined IntereStyle, which facilitates encoding by focusing on the interest region. IntereStyle steers the encoder to disentangle the encodings of the interest and uninterest regions. To this end, we filter the information of the uninterest region iteratively to regulate the negative impact of the uninterest region. We demonstrate that IntereStyle achieves both lower distortion and higher perceptual quality compared to the existing state-of-the-art encoders. Especially, our model robustly conserves features of the original images, which shows the robust image editing and style mixing results. We will release our code with the pre-trained model after the review.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.