Opening up a window on the postinflationary QCD axion (2209.09908v2)
Abstract: The QCD axion cosmology depends crucially on whether the QCD axion is present during inflation or not. We point out that contrary to the standard criterion, the Peccei-Quinn (PQ) symmetry could remain unbroken during inflation, even when the axion decay constant, $f_a$, is (much) above the inflationary Hubble scale, $H_I$. This is achieved through the heavy-lifting of the PQ scalar field due to its leading non-renormalizable interaction with the inflaton, encoded in a high-dimensional operator which respects the approximate shift symmetry of the inflaton. The mechanism opens up a new window for the post-inflationary QCD axion and significantly enlarges the parameter space, in which the QCD axion dark matter with $f_a > H_I$ could be compatible with high-scale inflation and free from constraints on axion isocurvature perturbations. There also exist non-derivative couplings, which still keep the inflaton shift symmetry breaking under control, to achieve the heavy-lifting of the PQ field during inflation. Additionally, by introducing an early matter domination era, more parameter space of high $f_a$ could yield the observed DM abundance.
- R. D. Peccei and H. R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38, 1440 (1977a).
- R. D. Peccei and H. R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16, 1791 (1977b).
- S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
- F. Wilczek, Problem of strong P𝑃Pitalic_P and T𝑇Titalic_T invariance in the presence of instantons, Phys. Rev. Lett. 40, 279 (1978).
- J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. 120B, 127 (1983).
- M. Dine and W. Fischler, The not-so-harmless axion, Phys. Lett. B 120, 137 (1983).
- L. F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120, 133 (1983).
- C. B. Adams et al., Axion Dark Matter, in 2022 Snowmass Summer Study (2022) arXiv:2203.14923 [hep-ex] .
- P. Asadi et al., Early-Universe Model Building, (2022a), arXiv:2203.06680 [hep-ph] .
- A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347 (1981).
- P. Sikivie, Axion Cosmology, Lect. Notes Phys. 741, 19 (2008), arXiv:astro-ph/0610440 .
- D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
- M. P. Hertzberg, M. Tegmark, and F. Wilczek, Axion Cosmology and the Energy Scale of Inflation, Phys. Rev. D 78, 083507 (2008), arXiv:0807.1726 [astro-ph] .
- M. Kawasaki and K. Nakayama, Axions: Theory and Cosmological Role, Ann. Rev. Nucl. Part. Sci. 63, 69 (2013), arXiv:1301.1123 [hep-ph] .
- P. J. Steinhardt and M. S. Turner, Saving the Invisible Axion, Phys. Lett. B 129, 51 (1983).
- D. Seckel and M. S. Turner, Isothermal Density Perturbations in an Axion Dominated Inflationary Universe, Phys. Rev. D 32, 3178 (1985).
- D. H. Lyth, A Limit on the Inflationary Energy Density From Axion Isocurvature Fluctuations, Phys. Lett. B 236, 408 (1990).
- M. S. Turner and F. Wilczek, Inflationary axion cosmology, Phys. Rev. Lett. 66, 5 (1991).
- A. D. Linde, Axions in inflationary cosmology, Phys. Lett. B 259, 38 (1991).
- Y. Akrami et al. (Planck), Planck 2018 results. X. constraints on inflation, Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- K. Choi, K. S. Jeong, and M.-S. Seo, String theoretic QCD axions in the light of PLANCK and BICEP2, JHEP 07, 092, arXiv:1404.3880 [hep-th] .
- E. J. Chun, Axion Dark Matter with High-Scale Inflation, Phys. Lett. B 735, 164 (2014), arXiv:1404.4284 [hep-ph] .
- M. Fairbairn, R. Hogan, and D. J. E. Marsh, Unifying inflation and dark matter with the Peccei-Quinn field: observable axions and observable tensors, Phys. Rev. D 91, 023509 (2015), arXiv:1410.1752 [hep-ph] .
- T. Higaki, K. S. Jeong, and F. Takahashi, Solving the Tension between High-Scale Inflation and Axion Isocurvature Perturbations, Phys. Lett. B 734, 21 (2014), arXiv:1403.4186 [hep-ph] .
- K. Nakayama and M. Takimoto, Higgs inflation and suppression of axion isocurvature perturbation, Phys. Lett. B 748, 108 (2015), arXiv:1505.02119 [hep-ph] .
- J. Kearney, N. Orlofsky, and A. Pierce, High-Scale Axions without Isocurvature from Inflationary Dynamics, Phys. Rev. D 93, 095026 (2016), arXiv:1601.03049 [hep-ph] .
- K. S. Jeong and F. Takahashi, Suppressing Isocurvature Perturbations of QCD Axion Dark Matter, Phys. Lett. B 727, 448 (2013), arXiv:1304.8131 [hep-ph] .
- P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48, 1156 (1982).
- A. Vilenkin and A. E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett. 48, 1867 (1982).
- G. Lazarides and Q. Shafi, Axion Models with No Domain Wall Problem, Phys. Lett. B 115, 21 (1982).
- S. Chang, C. Hagmann, and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev. D 59, 023505 (1999), arXiv:hep-ph/9807374 .
- R. L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180, 225 (1986).
- A. Vilenkin and T. Vachaspati, Radiation of Goldstone Bosons From Cosmic Strings, Phys. Rev. D 35, 1138 (1987).
- D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys. Lett. B 195, 361 (1987).
- R. L. Davis and E. P. S. Shellard, DO AXIONS NEED INFLATION?, Nucl. Phys. B 324, 167 (1989).
- R. A. Battye and E. P. S. Shellard, Global string radiation, Nucl. Phys. B 423, 260 (1994a), arXiv:astro-ph/9311017 .
- R. A. Battye and E. P. S. Shellard, Axion string constraints, Phys. Rev. Lett. 73, 2954 (1994b), [Erratum: Phys.Rev.Lett. 76, 2203–2204 (1996)], arXiv:astro-ph/9403018 .
- M. Yamaguchi, M. Kawasaki, and J. Yokoyama, Evolution of axionic strings and spectrum of axions radiated from them, Phys. Rev. Lett. 82, 4578 (1999), arXiv:hep-ph/9811311 .
- C. Hagmann, S. Chang, and P. Sikivie, Axion radiation from strings, Phys. Rev. D 63, 125018 (2001), arXiv:hep-ph/0012361 .
- M. Gorghetto, E. Hardy, and G. Villadoro, More axions from strings, SciPost Phys. 10, 050 (2021a), arXiv:2007.04990 [hep-ph] .
- C. J. Hogan and M. J. Rees, AXION MINICLUSTERS, Phys. Lett. B 205, 228 (1988).
- E. W. Kolb and I. I. Tkachev, Axion miniclusters and Bose stars, Phys. Rev. Lett. 71, 3051 (1993), arXiv:hep-ph/9303313 .
- E. W. Kolb and I. I. Tkachev, Nonlinear axion dynamics and formation of cosmological pseudosolitons, Phys. Rev. D 49, 5040 (1994a), arXiv:astro-ph/9311037 .
- E. W. Kolb and I. I. Tkachev, Large amplitude isothermal fluctuations and high density dark matter clumps, Phys. Rev. D 50, 769 (1994b), arXiv:astro-ph/9403011 .
- K. M. Zurek, C. J. Hogan, and T. R. Quinn, Astrophysical Effects of Scalar Dark Matter Miniclusters, Phys. Rev. D 75, 043511 (2007), arXiv:astro-ph/0607341 .
- A. Vaquero, J. Redondo, and J. Stadler, Early seeds of axion miniclusters, JCAP 04, 012, arXiv:1809.09241 [astro-ph.CO] .
- P. Tinyakov, I. Tkachev, and K. Zioutas, Tidal streams from axion miniclusters and direct axion searches, JCAP 01, 035, arXiv:1512.02884 [astro-ph.CO] .
- S. Davidson and T. Schwetz, Rotating Drops of Axion Dark Matter, Phys. Rev. D 93, 123509 (2016), arXiv:1603.04249 [astro-ph.CO] .
- Y. Bai and Y. Hamada, Detecting Axion Stars with Radio Telescopes, Phys. Lett. B 781, 187 (2018), arXiv:1709.10516 [astro-ph.HE] .
- L. Dai and J. Miralda-Escudé, Gravitational Lensing Signatures of Axion Dark Matter Minihalos in Highly Magnified Stars, Astron. J. 159, 49 (2020), arXiv:1908.01773 [astro-ph.CO] .
- Q. Shafi and A. Vilenkin, Spontaneously Broken Global Symmetries and Cosmology, Phys. Rev. D 29, 1870 (1984).
- L. A. Kofman and A. D. Linde, Generation of Density Perturbations in the Inflationary Cosmology, Nucl. Phys. B 282, 555 (1987).
- L. A. Kofman and D. Y. Pogosian, Nonflat Perturbations in Inflationary Cosmology, Phys. Lett. B 214, 508 (1988).
- M. Gorghetto, E. Hardy, and H. Nicolaescu, Observing invisible axions with gravitational waves, JCAP 06, 034, arXiv:2101.11007 [hep-ph] .
- M. Kawasaki, T. Moroi, and T. Yanagida, Can decaying particles raise the upperbound on the peccei-quinn scale?, Phys. Lett. B 383, 313 (1996), arXiv:hep-ph/9510461 [hep-ph] .
- T. Banks and M. Dine, The Cosmology of string theoretic axions, Nucl. Phys. B 505, 445 (1997), arXiv:hep-th/9608197 .
- G. F. Giudice, E. W. Kolb, and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64, 023508 (2001), arXiv:hep-ph/0005123 .
- D. Grin, T. L. Smith, and M. Kamionkowski, Axion constraints in non-standard thermal histories, Phys. Rev. D 77, 085020 (2008), arXiv:0711.1352 [astro-ph] .
- L. Visinelli and P. Gondolo, Axion cold dark matter in non-standard cosmologies, Phys. Rev. D 81, 063508 (2010), arXiv:0912.0015 [astro-ph.CO] .
- N. Bernal, F. Hajkarim, and Y. Xu, Axion Dark Matter in the Time of Primordial Black Holes, Phys. Rev. D 104, 075007 (2021a), arXiv:2107.13575 [hep-ph] .
- S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP 05 (5), 011, arXiv:1711.03988 [hep-ph] .
- L.-T. Wang and Z.-Z. Xianyu, Gauge Boson Signals at the Cosmological Collider, JHEP 11, 082, arXiv:2004.02887 [hep-ph] .
- J. Fan, M. Reece, and Y. Wang, An Inflationary Probe of Cosmic Higgs Switching, JHEP 05, 042, arXiv:1905.05764 [hep-th] .
- X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04, 027, arXiv:0911.3380 [hep-th] .
- P. Creminelli, On non-Gaussianities in single-field inflation, JCAP 10, 003, arXiv:astro-ph/0306122 .
- J. Fan, M. Reece, and L.-T. Wang, Mitigating Moduli Messes in Low-Scale SUSY Breaking, JHEP 09, 126, arXiv:1106.6044 [hep-ph] .
- K. Enqvist and M. S. Sloth, Adiabatic CMB perturbations in pre - big bang string cosmology, Nucl. Phys. B 626, 395 (2002), arXiv:hep-ph/0109214 .
- D. H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524, 5 (2002), arXiv:hep-ph/0110002 .
- T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B 522, 215 (2001), [Erratum: Phys.Lett.B 539, 303–303 (2002)], arXiv:hep-ph/0110096 .
- T. L. Smith and D. Grin, Probing a panoply of curvaton-decay scenarios using CMB data, Phys. Rev. D 94, 103517 (2016), arXiv:1511.07431 [astro-ph.CO] .
- V. Vennin, K. Koyama, and D. Wands, Encyclopædia curvatonis, JCAP 11, 008, arXiv:1507.07575 [astro-ph.CO] .
- S. Kumar and R. Sundrum, Cosmological collider physics and the curvaton, JHEP 2020 (4), 077, arXiv:1908.11378 [hep-ph] .
- I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249, 361 (1985).
- F. L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659, 703 (2008), arXiv:0710.3755 [hep-th] .
- T. Moroi, M. Yamaguchi, and T. Yanagida, On the solution to the Polonyi problem with 𝒪𝒪\mathcal{O}caligraphic_O(10-TeV) gravitino mass in supergravity, Phys. Lett. B 342, 105 (1995), arXiv:hep-ph/9409367 .
- G. Kane, K. Sinha, and S. Watson, Cosmological Moduli and the Post-Inflationary Universe: A Critical Review, Int. J. Mod. Phys. D 24, 1530022 (2015), arXiv:1502.07746 [hep-th] .
- A. E. Nelson and H. Xiao, Axion cosmology with early matter domination, Phys. Rev. D 98, 063516 (2018), arXiv:1807.07176 [astro-ph.CO] .
- K. N. Abazajian et al. (CMB-S4), CMB-S4 Science Book, First Edition, (2016), arXiv:1610.02743 [astro-ph.CO] .
- N. A. Dondi, F. Sannino, and J. Smirnov, Thermal history of composite dark matter, Phys. Rev. D 101, 103010 (2020), arXiv:1905.08810 [hep-ph] .
- M. Dine, L. Randall, and S. D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458, 291 (1996), arXiv:hep-ph/9507453 .
- T. W. B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9, 1387 (1976).
- T. W. B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67, 183 (1980).
- A. Vilenkin, Cosmic Strings, Phys. Rev. D 24, 2082 (1981).
- L. Fleury and G. D. Moore, Axion dark matter: strings and their cores, JCAP 01, 004, arXiv:1509.00026 [hep-ph] .
- V. B. Klaer and G. D. Moore, How to simulate global cosmic strings with large string tension, JCAP 10, 043, arXiv:1707.05566 [hep-ph] .
- M. Gorghetto, E. Hardy, and G. Villadoro, Axions from strings: the attractive solution, JHEP 07 (7), 151, arXiv:1806.04677 [hep-ph] .
- S. J. Asztalos et al. (ADMX), An Improved RF cavity search for halo axions, Phys. Rev. D 69, 011101 (2004), arXiv:astro-ph/0310042 .
- B. M. Brubaker et al., First results from a microwave cavity axion search at 24 μ𝜇\muitalic_μeV, Phys. Rev. Lett. 118, 061302 (2017), arXiv:1610.02580 [astro-ph.CO] .
- L. Zhong et al. (HAYSTAC), Results from phase 1 of the HAYSTAC microwave cavity axion experiment, Phys. Rev. D 97, 092001 (2018), arXiv:1803.03690 [hep-ex] .
- N. Du et al. (ADMX), A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett. 120, 151301 (2018), arXiv:1804.05750 [hep-ex] .
- T. Braine et al. (ADMX), Extended Search for the Invisible Axion with the Axion Dark Matter Experiment, Phys. Rev. Lett. 124, 101303 (2020), arXiv:1910.08638 [hep-ex] .
- K. M. Backes et al. (HAYSTAC), A quantum-enhanced search for dark matter axions, Nature 590, 238 (2021), arXiv:2008.01853 [quant-ph] .
- O. Kwon et al. (CAPP), First Results from an Axion Haloscope at CAPP around 10.7 μ𝜇\muitalic_μeV, Phys. Rev. Lett. 126, 191802 (2021), arXiv:2012.10764 [hep-ex] .
- C. Bartram et al. (ADMX), Search for Invisible Axion Dark Matter in the 3.3–4.2 μ𝜇\muitalic_μeV Mass Range, Phys. Rev. Lett. 127, 261803 (2021), arXiv:2110.06096 [hep-ex] .
- J. Kim et al., Near-Quantum-Noise Axion Dark Matter Search at CAPP around 9.5 μ𝜇\muitalic_μeV, (2022), arXiv:2207.13597 [hep-ex] .
- I. J. Allali, M. P. Hertzberg, and Y. Lyu, Altered Axion Abundance from a Dynamical Peccei-Quinn Scale, Phys. Rev. D 105, 123517 (2022), arXiv:2203.15817 [hep-ph] .
- M. S. Turner, Cosmic and Local Mass Density of Invisible Axions, Phys. Rev. D 33, 889 (1986).
- D. H. Lyth, Axions and inflation: Sitting in the vacuum, Phys. Rev. D 45, 3394 (1992).
- K. Strobl and T. J. Weiler, Anharmonic evolution of the cosmic axion density spectrum, Phys. Rev. D 50, 7690 (1994), arXiv:astro-ph/9405028 .
- Y. Gouttenoire, G. Servant, and P. Simakachorn, Beyond the Standard Models with Cosmic Strings, JCAP 07, 032, arXiv:1912.02569 [hep-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.