Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic Models for Replication Origin Spacings in Eukaryotic DNA Replication (2209.09680v3)

Published 20 Sep 2022 in q-bio.QM and math.PR

Abstract: We consider eukaryotic DNA replication and in particular the role of replication origins in this process. We focus on origins which are `active' - that is, trigger themselves in the process before being read by the replication forks of other origins. We initially consider the spacings of these active replication origins in comparison to certain probability distributions of spacings taken from random matrix theory. We see how the spacings between neighbouring eigenvalues from certain collections of random matrices has some potential for modelling the spacing between active origins. This suitability can be further augmented with the use of uniform thinning which acts as a continuous deformation between correlated eigenvalue spacings and exponential (Poissonian) spacings. We model the process as a modified 2D Poisson process with an added exclusion rule to identify active points based on their position on the chromosome and trigger time relative to other origins. We see how this can be reduced to a stochastic geometry problem and show analytically that two active origins are unlikely to be close together, regardless of how many non-active points are between them. In particular, we see how these active origins repel linearly. We then see how data from various DNA datasets match with simulations from our model. We see that whilst there is variety in the DNA data, comparing the data with the model provides insight into the replication origin distribution of various organisms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube