Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finitude of physical measures for random maps

Published 19 Sep 2022 in math.DS, math.PR, and math.SP | (2209.08714v3)

Abstract: For random compositions of independent and identically distributed measurable maps on a Polish space, we study the existence and finitude of absolutely continuous ergodic stationary probability measures (which are, in particular, physical measures) whose basins of attraction cover the whole space almost everywhere. We characterize and hierarchize such random maps in terms of their associated Markov operators, as well as show the difference between classes in the hierarchy by plenty of examples, including additive noise, multiplicative noise, and iterated function systems. We also provide sufficient practical conditions for a random map to belong to these classes. For instance, we establish that any continuous random map on a compact Riemannian manifold with absolutely continuous transition probability has finitely many physical measures whose basins of attraction cover Lebesgue almost all the manifold.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.