Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence analysis of one-point large deviations rate functions of numerical discretizations for stochastic wave equations with small noise

Published 17 Sep 2022 in math.NA and cs.NA | (2209.08341v1)

Abstract: In this work, we present the convergence analysis of one-point large deviations rate functions (LDRFs) of the spatial finite difference method (FDM) for stochastic wave equations with small noise, which is essentially about the asymptotical limit of minimization problems and not a trivial task for the nonlinear cases. In order to overcome the difficulty that objective functions for the original equation and the spatial FDM have different effective domains, we propose a new technical route for analyzing the pointwise convergence of the one-point LDRFs of the spatial FDM, based on the $\Gamma$-convergence of objective functions. Based on the new technical route, the intractable convergence analysis of one-point LDRFs boils down to the qualitative analysis of skeleton equations of the original equation and its numerical discretizations.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.