Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reinterpretation and Long-Term Preservation of Data and Code (2209.08054v1)

Published 16 Sep 2022 in physics.comp-ph and hep-ph

Abstract: Careful preservation of experimental data, simulations, analysis products, and theoretical work maximizes their long-term scientific return on investment by enabling new analyses and reinterpretation of the results in the future. Key infrastructure and technical developments needed for some high-value science targets are not in scope for the operations program of the large experiments and are often not effectively funded. Increasingly, the science goals of our projects require contributions that span the boundaries between individual experiments and surveys, and between the theoretical and experimental communities. Furthermore, the computational requirements and technical sophistication of this work is increasing. As a result, it is imperative that the funding agencies create programs that can devote significant resources to these efforts outside of the context of the operations of individual major experiments, including smaller experiments and theory/simulation work. In this Snowmass 2021 Computational Frontier topical group report (CompF7: Reinterpretation and long-term preservation of data and code), we summarize the current state of the field and make recommendations for the future.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.