Measuring Tail Risks (2209.07092v2)
Abstract: Value at risk (VaR) and expected shortfall (ES) are common high quantile-based risk measures adopted in financial regulations and risk management. In this paper, we propose a tail risk measure based on the most probable maximum size of risk events (MPMR) that can occur over a length of time. MPMR underscores the dependence of the tail risk on the risk management time frame. Unlike VaR and ES, MPMR does not require specifying a confidence level. We derive the risk measure analytically for several well-known distributions. In particular, for the case where the size of the risk event follows a power law or Pareto distribution, we show that MPMR also scales with the number of observations $n$ (or equivalently the length of the time interval) by a power law, $\text{MPMR}(n) \propto n{\eta}$, where $\eta$ is the scaling exponent. The scale invariance allows for reasonable estimations of long-term risks based on the extrapolation of more reliable estimations of short-term risks. The scaling relationship also gives rise to a robust and low-bias estimator of the tail index (TI) $\xi$ of the size distribution, $\xi = 1/\eta$. We demonstrate the use of this risk measure for describing the tail risks in financial markets as well as the risks associated with natural hazards (earthquakes, tsunamis, and excessive rainfall).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.