Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Nonparametric estimation of trawl processes: Theory and Applications (2209.05894v2)

Published 13 Sep 2022 in math.ST, stat.ME, and stat.TH

Abstract: Trawl processes belong to the class of continuous-time, strictly stationary, infinitely divisible processes; they are defined as L\'{e}vy bases evaluated over deterministic trawl sets. This article presents the first nonparametric estimator of the trawl function characterising the trawl set and the serial correlation of the process. Moreover, it establishes a detailed asymptotic theory for the proposed estimator, including a law of large numbers and a central limit theorem for various asymptotic relations between an in-fill and a long-span asymptotic regime. In addition, it develops consistent estimators for both the asymptotic bias and variance, which are subsequently used for establishing feasible central limit theorems which can be applied to data. A simulation study shows the good finite sample performance of the proposed estimators. The new methodology is applied to forecasting high-frequency financial spread data from a limit order book and to estimating the busy-time distribution of a stochastic queue.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.